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2. INTRODUCTION

2 Introduction
Any complex visual system will need a good selection mechanism to allow it to allocate its spa-
tially limited processing resources appropriately [30]. Attention is a mechanism that enables vi-
sion systems to cope with the tradeoff between the amount of information to be processed and
the substance of the process itself. Designs of computer vision systems or algorithms are often
motivated by the biological counterparts one way or another. This can be attributed to the fact
that biological systems have in their evolution acquired functions which actually work in the
real world. An example of such a function which is elegantly achieved in biological systems is
the attentional mechanism. It serves to efficiently reduce the enormous amounts of available in-
formation such that it can be selectively processed. The main theme of this paper is to present
a computational approach to such attentional mechanisms. The emerging question is how to
achieve such mechanisms and what kind of criterion to employ out of the enormous amount of
basic features that may be observed in a scene. These basic features include for example color,
orientation, size, motion, and stereoscopic disparity. In designing a computational framework
of such attention mechanisms and in choosing among these basic features, we believe that it is
worth while to refer to the successfully functioning human attentional system. Nakayama and
Silverman [17] state in their reports on psychophysical observations:

“We speculate that retinal disparity in addition to retinal locus has priority when
compared with other visual stimulus dimensions...” (p. 265)

Retinal disparity is defined as the retinal displacement between the two projections of an object
on the left and right retina. In the human visual system binocular stereopsis, by way of retinal
disparity, provides an important means for depth perception. Furthermore nearness in depth is
directly connected to urgency in spatio-temporal environments. With the motivation that this
should also provide one of the strongest cues in computer and machine vision, we employ binoc-
ular stereopsis as the central cue for our computational approach to attention.

In this work, as well as stereopsis, we propose to base the system also on image flow and
motion in its framework. As seen in the schematic diagram of our framework in Figure 1, in this
scheme cue integration and attention over time are essential aspects. Part of the cue integration
work has appeared in [27]. The contribution here is that we show that the system can attend to
different targets in a purposive way in a cluttered environment. The second key point in this
context is the use of depth information, as suggested is done in human vision by Nakayama and
Silverman [17]. The computation of precise depth information is generally a time consuming
task. The third important point of this work is therefore that a functioning system capable of
selectively attending different objects can be obtained with rather simple algorithms allowing
fast implementations, i.e., we propose to employ local phase information to derive both depth and
flow. This is demonstrated by experiments in which a moving or stationary binocular observer
(a mobile platform with a head-eye system) selectively masks out different moving objects in
real scenes and holds gaze on them over some frames. The selection criteria are here based on
nearness and motion, but could in our open architecture be of any type. The important point to
note is that the required information is indeed computable and that the desirable behavior of the
system is acquired.

The organization of the paper is as follows. We first make a brief overview of relevant issues
on the human attentional system based on psychophysical reports in Section 3. Section 4 then
introduces some of the earlier works on attention. Describing the low level modules in Section 5,
we design the cue integrations along pursuit and saccade mode in Section 6. Section 7 exemplifies
the performance of the proposed prototype through experiments, and Section 8 finally concludes
the paper.

3 Observations about human attention
The notion of attention plays an important role in biological vision in terms of selecting a part
of the scene out of the massive flow of information in space and time. Posner and Petersen [21]
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Figure 1: A schematic diagram of the proposed attentional framework. It follows the general
concept of visual attention, i.e., the early parallel stage with preattentive cues and the later serial
stage where the cues are integrated. The diamonds indicate a one frame delay.
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discuss the attentional system of the human brain by dividing it into three major subsystems that
perform different but interrelated functions, these are (i) orienting to sensory events, (ii) detecting
signals for focal processing, and (iii) maintaining an alert state. Among those functions, we will
in this paper mostly be concerned with orienting to sensory events, including issues on visual
locations and search.

Visual locations: Visual orienting is usually defined in terms of the foveation of a stimulus (overt
by physically directing attention). Foveating a stimulus improves efficiency of processing targets
in terms of acuity, but it is also possible to change the priority given a stimulus by attending to
its location covertly without any change in eye position [21]. In other words, it is almost as if we
have some “internal spotlight” that can be aligned with an object to enable us to see it [8]. Coren et
al. [6] use the metaphor “attentional gaze” to conceptualize some of the findings in covert visual
orienting and visual search, and describe it like:

“Covert shifts in the attentional gaze seem to behave in a similar way to physical
movements of the eye and attentional gaze usually cannot be drawn to more than
one location in the visual field at any instance in time. Experimental studies of the
attentional gaze show that it can shift much faster than the eye — it reaches a stimulus
location before the eye does and seems to help to guide the eye to the proper location.”
(Coren et al. 1993, p. 517)

They also indicate three aspects of the attentional gaze which are important in the processing of
sensory information at any one moment, i.e. a locus, an extent, and a detail set [6]. Attentional
gaze poses an important issue on active vision [1, 2, 3], in the sense that it provides a clue to guide
the gaze direction spatio-temporally. Our attentional scheme appearing later treats to the aspects
of locus and extent while it does not specify any particular detailed set.

Visual search: Starting from a neurophysiological viewpoint, all neurons are selective in the range
of activation to which they will respond. The role of the attention system is to modulate this se-
lection for those types of stimuli that might be most important at a given moment. To understand
how this form of modulation operates, it is important to know how a stimulus would be pro-
cessed without the special effects of attention [21]. In cognition, unattended processing is called
“automatic” to distinguish it from the special processing that becomes available with attention. It
is also termed “preattentive processing” in dichotomy with attention.

In her article on preattentive processing from a psychological viewpoint, Treisman [25] poses two
different problems as follows:

“One is to define which features or properties are the basic elements or visual prim-
itives in early vision. The second concerns how they are put together again into the
correct combinations to form the coherent world that we perceive.” (Treisman 1985, p.
157)

She performs experiments focusing on texture segregation and visual search, where subjects are
asked to look for a particular target in displays containing varying numbers of distractor items. If
the target is defined by a simple visual feature, detection appears to result from parallel process-
ing; the target “pops out” and the search time is independent of how many distractors surround
it. Such experiments turn out to be consistent with the idea that early visual analysis results in
separate maps for separate properties, and that these maps pool their activity across locations,
allowing rapid access to information about the presence of a target, when it is the only item
characterized by a particular preattentively detectable feature [25]. Though there is not complete
agreement about the set of basic features, there is agreement about many members of the set, such
as color, orientation, size, motion and stereoscopic depth [30].

Also reported is that the search for an item defined by the conjunction of two stimulus dimen-
sions is conducted serially, and the search time increases as the number of items becomes larger.
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Thus, it seems that the visual system is incapable of conducting a parallel search over two stim-
ulus dimensions simultaneously. Nakayama and Silverman [17] extend this conclusion for the
conjunction of motion and color. Interestingly, they also point out two exceptions through similar
experiments: if one of the dimensions in a conjunctive search is stereoscopic disparity, a second
dimension of either color or motion can be searched in parallel.

Wolfe and Cave [30] review evidence of preattentive processing in the human visual system
through experiments and put it in a nice way:

“...the human visual system uses fast, efficient, parallel algorithms to guide the
later serial stages of visual processing. This attentional system can use information
about expected stimuli when it is available, but will identify unusual parts of the input
whether or not they are expected. These parallel mechanisms are very limited, both in
their accuracy and in what they can do, but by guiding the allocation of higher-level,
limited-capacity processes, they can speed visual processing considerably.” (Wolfe
and Cave 1990, p. 102)

The intension here is to employ similar simple and efficient mechanisms to obtain attentional
algorithms in a computer vision system to quickly identify those parts of the input that should be
processed immediately. Particularly we will try to obtain the observed advantage of stereoscopic
disparity as a basic feature which can be processed in parallel with some other basic feature as
seen in [17].

4 Related work

A number of computational approaches of attention have been proposed on the basis of the
psychophysical findings on human visual attention. Attentional mechanism can be highly task-
dependent and different approaches take different modalities while sharing certain concepts such
as the division into preattentive and attentive processing stages.

Burt [4] describes attention from a computer vision perspective by three elements: foveation,
tracking and high level interpretation. A rudimentary fovea is formed within a Laplacian pyra-
mid and tracking is performed to isolate selected regions of a scene in time, by canceling com-
puted background motion. He defines an object representation called a pattern treefor a fast,
hierarchical structured search arguing that very fast reasoning processes are needed to interpret
partial scene information as it is gathered, and to provide informed guidance for where to look
next. The pattern tree description of objects known to the system are sorted in a knowledge base
and the information is gathered in a task oriented fashion.

An attentional model applying the notion of winner-take-all is presented by Clark and Ferrier
[5]. The first stage in the model extracts primitives in parallel across the visual field. The results
from this stage are a set of feature mapswhich indicate the presence or absence of a feature at
each location in the image. The next stage of the model combines the results from the feature
maps. The output from the feature maps are amplified with different gains for each map and
then summed to form the saliencymap. Finding the location with the maximum value gives the
most salient location with respect to the given amplifier gains, which may vary over time, thus
changing the location of the most salient feature. However, only one location can be attended to
at one time. The employed features are blobs, moments of objects, and the intensity value.

Sandon [22] bases his attentional vision system on feature and saliency maps as well, but aims
for recognition of an object in a particular location in an image. The attentional system consists
of a feature processor, an object processor and an attention processor. According to the needs
of the current task, feature maps extracted from the image by the feature processor are gated by
the object processor, which maintains a set of object models, to provide inputs to the attention
processor. The attention processor combines the activity from the feature maps to compute the
saliency map, which represents the importance of each region of the image. According to the
result of attentional competition, in addition, it gates regions of feature maps to provide inputs to
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the object processor. A feature called an edgehistogram, including edge information (magnitude
and orientation), is used for the feature maps.

The work by Syeda-Mahmood [24] is also based on object models. The problem domain is
defined within the scope of model-based object recognition, and the experiments are limited to
static scenes. The idea is to determine which regions in an image are likely to come from a single
object, and color is employed as the feature for this segmentation.

In the approach proposed by Westelius [28], edge information and rotation symmetry are
adopted as the features to form a potential field for driving attention. Phase information from
quadrature filters is used to generate a potential field drawing the attention towards and along
lines and edges in the image. To find objects another potential field is generated using rotation
symmetries. The potential fields are weighted together differently depending on the state of the
system, and the state is in turn determined by the type and quality of the data in the fixation
point. The states are, (i) search line, (ii) track line, (iii) avoid object, and (iv) locate object.

An attentional prototype for early vision is developed by Tsotsos et al. [26] in which they
emphasize the neurobiological plausibility of it. The model consists of a set of hierarchical com-
putations, involving the idea of an inhibitory beamwhich expands as it traverses through the entire
hierarchy but is kept to a limited size by inhibition. Any salience map can be used as the stimulus
at the input level, and the areas of attention are acquired as selected receptive�elds at the bottom
level.

Our work has in several ways been inspired by the described efforts. An essential additional
contribution of ours is the incorporation of three dimensional information from stereopsis [12].
In particular, we use stereoscopic disparity derived from the fact that two eyes receive slightly
different views of the three-dimensional world.

Concerning the schemes for measuring disparity as a static depth cue in stereo vision, a wealth
of algorithms has been suggested. Most of the techniques fall in one of the two categories of
area-based correlation and feature-based correspondence, and those approaches to stereopsis are
in a sense complementary [9]. Correlation produces a dense set of responses but has difficulty
with constant or rapidly changing structure and with interocular image difference, while feature-
based correspondence avoids some of these problems by considering the image at different scales
but then fails to obtain a dense set of responses by matching only sparse tokens. It would be
desirable both to avoid the problem of structure at different scales and at the same time to produce
a dense response. Some additional techniques have been developed to complement some of the
shortcomings, such as multiple-baseline stereo [19], non-parametric local census transform [31],
or use of linear spatial filters tuned to a range of orientations and scales [11]. It is on the other
hand common in both techniques that a search process is required to find the best match between
the areas or features.

As a third approach, a new technique has been proposed in which disparity is expressed in
terms of phase differences in the output of local, bandpass filters applied to the stereo views
[10, 23, 29]. The main advantages of such local, phase-based approaches include computational
simplicity, stability against varying lighting condition and especially direct localization of the es-
timated disparities. Also, there is biological evidence supporting different aspects of this method
including [23], e.g. bandpass spatial-frequency filters are thought to be plausible models of the
way in which the primary visual cortex processes a visual image [7].

We consider the characteristics of this search-free and thus fast approach as suitable to provide
stereoscopic disparity as a basic feature in preattentional early vision. We therefore employ the
technique in our computational approach to attention while the traditional alternatives appear to
be less well suited in such an application.

5 Early modules

This section describes the preattentive cues employed in the early parallel stage: stereo disparity,
image flow and motion detection, which are integrated in the later serial stage.
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5.1 Stereo disparity

Relative depth, that plays a central role in our system, is derived from a dense disparity map. As
disparity estimator we employ a phase-based algorithm which has the advantages of low com-
putational cost, stability against varying lighting condition and especially of allowing good direct
localization of the estimated disparity. The disparity estimation algorithm is briefly introduced
in Appendix A.1. The employed multi-scaled scheme based on the algorithm is described in [15].
A target mask is produced by back projection of a selected target disparity and the process of
disparity selection is based on histogramming and disparity prediction. The idea is to slice up the
scene according to relative-depth and then segment out the part of the input image corresponding
to the selected target as a mask. See Appendix A.2 and [14] for details of the procedure producing
the target mask. A point to be noted is that the resulting mask may well involve multiple targets if
they are observed to be close to each other in depth. Further segmentation among such targets is
beyond the performance of the depth cue alone and some additional information sources would
be necessary to handle such a situation.

5.2 Image �ow

By applying the stereo algorithm to consecutive image frames instead of to a stereo image pair,
information of horizontal image flow can be obtained. The image flow cue provides another target
mask independent of the depth cue, and those cues are combined in order to deal with complex
scenes where multiple target candidates are observed. Information about image flow could be
made available in more specific form and as a matter of fact it could be by itself a central cue in
terms of attending to moving objects [16]. In our scheme, however, the use of image flow cue
is only in one-dimension along the horizontal direction, because by doing so this early module
can share identical input with the depth module. This additional module is in our experiments
shown to stabilize the attentional performance a great deal, in spite of its simplicity.

5.3 Motion detection

As the third module in the early preattentive stage, a technique for motion detection is employed.
The fundamental concept is outlined here. The idea is to exploit the brightness constancy con-
straint in conjunction with an affine transformation between two consecutive images. Assuming
the moving target to be relatively small compared to the background, we compute an affine fit be-
tween two consecutive images by posing a weighted least squares minimization problem. Given
that the background contains small variations in depth and is far away enough, relative to the
motion, the background cancels in the residual image and moving objects appear. The technique
is formulated in Appendix ?? and full description is found in [18].

6 Cue integration
Given information from the early stage in the form of stereo disparity, image flow estimation and
detected motion, the role of the later stage is to guide the attention to an appropriate part of the
input image as sketched in Figure 1. This guidance is achieved by combination of the different
early cues in two independent modes, namely the pursuit and saccade modes, each of which
produces a target mask. As a criterion to choose the final attentional target mask, depth-based
target selection [13] and duration-based one are considered.

6.1 Pursuit mode

The objective in the pursuit mode is to keep attending to the current target and mask the cor-
responding part of the input image sequence accordingly. The framework of the process in this
mode is schematically depicted in Figure 2 using the following notation at frame number k, Tp(k) :
Target pursuit mask, Td(k) : Target mask based on stereo disparity, Tf (k) : Target mask based on

7



6. CUE INTEGRATION

image flow, and T (k � 1) : Target mask in the previous frame. Taking the disparity and flow maps
as inputs from the early stage, it returns a target pursuit mask Tp(k) as output.
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Figure 2: Schematic flow diagram of the attentional pursuit. It composes part of the “cue inte-
gration” in the framework shown in Figure 1. The diamonds indicate a one frame delay in the
feedback. The circles with & indicate a logical and operation.

As described earlier, the disparity target mask Td(k) is produced by a disparity selection tech-
nique based on histogramming and back projection. The information of image flow is processed
in an analogous framework, that is, a one-dimensional histogram is constructed for the horizontal
flow map, and a flow target mask Tf (k) is produced by back projection of a flow parameter that
is also selected based on prediction. To summarize, from each of the disparity and flow maps a
target mask is produced and those masks are fused with a logical and operation into the target
pursuit mask Tp(k) so that just the part that is consistent with both disparity and flow remains.
The process in frame k can be formulated as:

Tp(k) = Td(k) \ Tf (k) (1)

6.2 Saccademode

The saccade mode on the other hand is aimed at disengaging the attention from the current target
and shift it to a new one. The framework of the process in this mode is schematically depicted
in Figure 3 using the following notation at frame k, Ts(k) : Target saccade mask, Tm (k) : Target
mask based on detected motion, and T (k � 1) : Target mask in the previous frame. While the
disparity cue again plays the central role here, the important feature is that a shift is triggered
when a new interesting part in the input is detected. The definition of “interesting part” can
be task dependent and any distractor among available alternatives could in principle trigger an
attentional shift. Here we have chosen only motion relative to the background, since it provides
a strong saccadic cue and therefore allows us to demonstrate our framework.

As is the case in the pursuit mode, a target saccade mask Ts(k) is produced basically by the
disparity selection and serial back projection. The previous target mask T (k � 1) is, however,
utilized differently, i.e., in the saccade mode T (k � 1) is inversely applied, so that the current
target is inhibited instead of accepted as contribution to the disparity histogram. Besides, the use
of disparity information as input is restricted to the part where relative motion to the background
is detected. The disparity histogram then carries information just about a newly detected moving
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Figure 3: Schematic �ow diagram of the attentional saccade. It composespart of the “cue integration” in
the framework shown in Figure 1. The circleswith & indicate a logical and operation.

target. The process is completed by inhibiting the produced target mask again by T (k � 1) to
confirm that the resulting target saccade mask Ts(k) does not overlap the former target. The
process in frame k can be summarized as:

Ts(k) = Tm (k) \ T (k � 1) (2)

It should be noted that the framework of the saccade mode without feedback of the former target
mask exactly provides a mode to initiate the process by finding the moving target to attend to.
This also applies to picking up a new moving target and to restart the process in case the pursuit
mode for some reason lost track of the target, e.g., when the target disappears from the scene.

6.3 Target selection

The cue integration process described thus far provides a pursuit mask Tp(k) and a saccade mask
Ts(k) and the choice among those masks is the remaining issue, which is rather task dependent.
Some criterion is needed to decide when the saccade should happen or pursuit should continue
and thereby to determine the final target mask T (k) in each frame (see Figure 4). Two different
criteria are proposed in the following, i.e., depth-based criterion and time transient criterion.

Depth-based criterion While the framework introduced is open to accept different criteria, we
have mainly considered a depth-based attentional scheme where the target that is closer in depth
is selected with higher priority, see equation 3. Such a criterion is reasonable for instance for
a moving observer who wants to avoid obstacles. The target saccade mask is selected when the
newly detected target turns out to be closer, or the current target disappears from the scene. Thus,
the closest moving object is kept on attended to over time.

T (k) =
{

Ts(k), for ds � dp

Tp(k), otherwise (3)

ds : Disparity of newly detected target
dp : Disparity of the current target

Duration-based criterion Certain tasks, such as recognition, identification or computing motion
may require that the system attends to the target for some certain time instance so that the relevant
process can produce the desired result. In addition to the depth-based criterion, thus, we have
considered a duration-based criterion. With this criterion, attention to some object is kept on
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Figure 4: Attentional target. In each frame either target pursuit or target saccade mask is selected
as the final target mask according to a criterion. For example in the depth-based criterion the
mask covering the closer target is selected on the basis of the comparison between the disparity
of the current target dp and that of newly detected target ds .

for a predefined duration and then shifted to some other object, according to the depth-based
criterion as soon as any candidate appears. Ideally the time instance the system attends to the
target object should be task dependent. Although our scheme has so far not been integrated with
other processes, experiments are performed assuming some certain time duration.

7 Experiments

The above described attentional scheme has been examined through experiments. In the exper-
iments we purposively choose to include humans as objects in the scene. The humans may be
either stationary or moving and may even change their course of travel unpredictably. As such
they provide reasonable attention candidates in a dynamic world. Moreover, in view of the cir-
cumstances in which a vision system should function, humans are common and important targets
to relate and react to, and thus to attend to. Humans also form realistic prototype objects in for
example obstacle avoidance, as obstacles to avoid may be either moving or stationary.

Figure 5 seen by a stationary binocular camera head shows a sample image sequence. It in-
cludes three persons walking around in a laboratory. Every 10th frame is shown (images are taken
at framerate 25 Hz). Disparity maps, certainty maps and horizontal flow maps are shown in Fig-
ure 6 - Figure 8. The disparity and flow maps are smoothed by an averaging process over time to
gain further stabilized performance1. From both of the relative depth and flow information parts
of the maps corresponding to the persons in the scene are segmented in each frame. As the third
preattentive cue information of detected motion, shown in Figure 9, is incorporated in such a way
that the closest moving object is kept on attended as the target at each frame.

The resulting target masks according to the depth-based criterion are shown in Figure 10. The
frames are numbered from 1 to 8. It is observed that the target masks are produced in consistency
with each of the disparity maps, the certainty maps and the horizontal flow maps. Figure 11
demonstrates the histograms for disparity selection in the corresponding frames. Histograms in
the pursuit mode based on the former target masks are indicated in lines, whereas those in the
saccade mode based on newly detected motion are in dashed lines. Appearing peaks represent
attended targets or target candidates, and it is observed that the attention is taken over from one
object to the other depending on the relative depth information. A detailed description of the
performance of the system along the frames is given in the following.

1The gray scale in the displayed maps is not necessarily consistent throughout the frames since it is scaled in the range
between the highest and lowest values in each frame respectively.
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Frame 1-3: By nearness and motion the system first picks out the person A, walking from the left
towards the center. Two peaks are appearing in the histograms at the corresponding frames.
The person A is represented by the peaks in lines as the current target. The peak shifts as the
person A moves further away. Note that smaller disparities correspond to closer objects in
depth. Peaks in dashed lines on the other hand represent another moving person B, passing
from the right hand side. In Frame 3 the person A and B are almost in the same distance
and the two peaks are overlapping. The third person C in behind is not appearing in the
histogram because of no motion.

Frame 4-6: At Frame 4 the attention to the person A is replaced with the second person B who
is then relatively closer than the person A. The person B is in attention while being present
until Frame 6, and represented by the peaks in line. In the histograms, in the meantime, two
peaks in dashed line are observed for the saccade mode by the person B and person C. They
are once merged into one peak at Frame 11 when two persons are in the same depth (see
Figure 6).

Frame 7-8: The attention is finally shifted to the third person C when B disappears from the
scene at Frame 13. Histograms in the saccade mode are vanishing as no object except for the
attended one is in noticeable motion.

Throughout the sequence the system basically masks one target at each frame following the
depth-based criterion. In situations when several objects belong to an overlapping range both
in depth and flow, however, more than one target could accidentally be masked. For example in
the Frame 7 in the sequence in Figure 10, it is seen that parts of the person A and the table on the
left corner are masked as well as the target person C. While this is largely a matter of defining
the range of target depth and flow, the result is natural because objects with completely identical
disparity and flow would not be recognized separately. The situation also indicates the possibility
to improve the scheme by merging the system with some extra cues such as information about
location in the early parallel process.

Figure 12 shows another sample image sequence, this time by moving cameras [20]. It in-
cludes two persons walking in a laboratory, one tracked at the center of the image, and the other
appearing on the right hand side, passing by in front and disappearing on the left end, while the
observing camera head is moving laterally. Every 10th frame is shown (images are taken at fram-
erate 25 Hz). Figure 13 shows that the motion detection process functions even for a sequence
with moving cameras. The resulting target masks are shown in Figure 14, where it is observed
that the closest moving object is kept attended to.

Figure 15 exemplifies the process of the moment when the target mask is shifted from one
target to the next one. Illustrated are the masks restricting the input to the disparity histogram,
two histograms in pursuit and saccade modes, and the target mask superimposed on the original
input image. They are shown for three consecutive frames, k � 1, k and k + 1 (left, middle and
right) to clarify the information flow between frames. A detailed description of the process along
the frames is as follows.

Frame k � 1: The disparity histogram in pursuit mode based on the former target mask provides
the current target disparity, dp = 13, while that in saccade mode based on the newly detected
moving target provides the disparity of the new target candidate, ds = 13. Since ds = dp , the
new candidate is no closer than the current target, and the pursuit target mask is selected as
the final target mask.

Frame k: Pursuit and saccade disparities in this frame are dp = 13 (target person staying at the
same depth) and ds = 12 (the second person approaching closer). Since ds < dp , the saccade
target mask is selected, i.e., attentional shift takes place. Notice that the former target mask
T (k � 1) is fed back.
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Figure 5: An example sequence with 3 moving persons taken by a stationary binocular cam-
era head. Top-left to bottom-right. Every 10th frame of the left image is shown (40 msec
between frames).

Figure 6: Disparity maps computed for the 3 persons sequence. The darker, the closer.

Figure 7: Certainty maps computed corresponding to the disparity map of the 3 three per-
sons sequence. The lighter, the higher certainty.

12



7. EXPERIMENTS

Figure 8: Horizontal flow maps computed for the 3 three persons sequence. The lighter, the more
leftward.

Figure 9: Detected motion for the 3 three persons sequence. The darker, the stronger.

Figure 10: Target masks computed for the 3 three persons sequence.

13



7. EXPERIMENTS

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

Figure 11: The disparity histograms in the pursuit mode based on the former target mask (solid
line) and in the saccade mode based on newly detected motion (dashed line). The horizontal and
vertical axes are for the disparity estimates and the sum of corresponding certainty measures.
Small disparities mean closeness in depth.

Frame k + 1: Analogously dp = 12 and ds = 13 since the attention has been shifted in previous
frame. The pursuit target mask is selected since ds > dp and the attention stays on the
second person.

Continuous processes such as above are conducted to determine the target mask in each frame,
providing the clue to the attentional target throughout sequence of images.

As the final experiment the duration-based criterion is examined using a sequence shown in
Figure 16. It includes again the three persons in front of a cluttered background: the person A,
moving in front from the left to the right throughout the sequence, the person B, standing on
the right hand side, and the person C, walking further back from the left hand side. Every 5th
frame is shown (images are taken at frame rate 25 Hz). In Figure 17 the target masks are shown.
The frames are numbered from 1 to 12. It is demonstrated that the compulsory attentional shift
occurs periodically by the duration-based criterion (duration is fixed to 10 frames). A detailed
description of the attentional shift is given for each period of the sequence.

Frame 1-3: Being the only moving object, A is selected as the target for attention. This period
continues even longer than the fixed duration since no other candidate takes on sufficient
movement to be attended to.

Frame 4-5: The attention is shifted to C whose movement begins to be recognized. For the fixed
duration (10 frames), C is kept as the target in the pursuit mode.

Frame 6-11: The attention is shifted back and forth while keeping the fixed duration. First back
to A, then to C and again to A. During this period B with little movement is not among the
candidates for the attention.

Frame 12: This time the attention is shifted instead to B that is finally starting to move in closer
distance than C is. The depth-based criterion is reflected here while employing the frame-
work of the duration-based criterion.

Overall it is seen that the behavior of the system is following the duration-based criterion. Though
the duration is fixed to 10 frames here, the choice is arbitrary. It should be determined depending
on the consecutive process on the attended target. There is some noise observed in masks in

14



7. EXPERIMENTS

Figure 12: An example sequence with 2 moving persons taken by a moving binocular camera
head. Top-left to bottom-right. Every 10th frame of the left image is shown (40 msec between
frames).

Figure 13: Detected motion for the 2 persons sequence. The darker, the stronger.

Figure 14: Target masks computed for the 2 persons sequence.
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(a) Detected motion masks (dark) and target masks in the former frame (gray).
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(b) Disparity histograms in pursuit mode based on the former target mask.
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(c) Disparity histograms in saccade mode based on newly detected motion.

(d) The resulting target masks superimposed on the original image sequence.

Figure 15: The process producing the target masks in frame k � 1, k, k+ 1 (left, middle, right). The
horizontal and vertical axes in the histograms are for disparity estimates and sum of correspond-
ing certainty values.
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8. CONCLUSION

certain frames such as Frame 4 and 8. It is mainly related to the fact that ranges of the disparity
and horizontal flow is fixed here for the segmentation of a target. That is, by a fixed range of
disparity different depth intervals are covered depending on the distance: the further, the larger
interval. A fixed range of flow also corresponds to varying displacement in time due to the motion
parallax. The employment of a flexible range definition considering the features of the attended
targets would improve the performance, and is an issue for further investigation.

8 Conclusion
In this paper we have proposed a computational approach to visual attention. The specific char-
acter of the work presented here is in the purposive target selection. Considering the problem of
attention using image sequences over time, we have specified the attended part of input image by
providing a target mask in each frame. Segmented disparity map based on histogramming pro-
vides the central cue in the proposed system, in cooperation with information of image flow and
a motion detection technique. With the early parallel stage of preattentive cues, the consecutive
stage integrated those cues. Key points in our system are summarized as:

� the employment of relative depth as a target selection criterion as suggested is performed
in human vision,

� the simple computation of low level cues such as disparity and flow by local phase,

� the integration of cues along pursuit and saccade mode realizing the purposive target selec-
tion.

We have shown experimentally that the system provides expected results for a given control
scheme for target selection based on nearness and motion. In particular this also demonstrates
that sufficient information for our system is computable by simple algorithms. The proposed
approach to visual attention therefore shows promise as a basis for investigating the “where to
look next” problem more generally.
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8. CONCLUSION

Figure 16: An example sequence with 3 persons taken by a stationary binocular camera head.
Top-left to bottom-right. Every 5th frame of the left image is shown (40 msec between frames).

Figure 17: Target masks computed for the sequence in Figure 16. Top-left to bottom-right. Every
5th frame is shown (40 msec between frames).
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A. APPENDIX

A Appendix

A.1 Phase-basedalgorithm

Disparity map The fundamental idea of the phase-based approach to disparity estimation is to
recover local disparity as the spatial shift from the local phase difference observed in the Fourier
domain. In practice, the phase is extracted by taking the argument of the convolution product
Vl (x) and Vr (x), which is produced at each point x in the image by convolving a complex filter2

with the left and the right stereo images3. As the local shift between stereo images is approxi-
mately proportional to the local phase difference, a disparity estimate at each point in the image
is derived accordingly:

D(x) ' [arg Vl (x) � arg Vr (x)]/ω(x). (4)

D(x) denotes disparity at x and ω(x) represents some measure of underlying frequency of the im-
age intensity function in the neighborhood of x, which in this case is computed as phase deriva-
tive. For details on the techniques employed here, see [12, 15].

Certainty map In order to check the feasibility of the estimated disparity and threshold unreli-
able estimation, we also compute a certainty value C(x) defined on the basis of the magnitude of
the convolution product:

C(x) �
√

jVl j jVr j �
2
√

jVl j jVr j
jVl j + jVr j

. (5)

A.2 Disparity selection

Disparity-certainty histogram Based on a disparity map D(x) and a certainty map C(x), we
compute a histogram H(Dd) with respect to the discrete disparities Dd :

H(Dd) =
∑

x

C(x) for f (x) j Dd � D(x) < Dd+1g. (6)

H(Dd) is defined as the sum of the certainty values at the pixels where the disparity is estimated
to Dd. Multiple peaks appear in the histogram corresponding to objects with different disparities.

Disparity prediction With a prediction of what disparity the target should have, the closest
peak in the histogram can be selected as the estimate of the target disparity. For computational
simplicity a linear predictor is used with a weighting factor α4:

Dp(k + 1) = Ds(k) + P (k) (7)
P (k) = α � (Ds(k) � Ds(k � 1)) + (1 � α) � P (k � 1) (8)

where Ds(k) and Dp(k) represent the selected and predicted disparity at frame number k while
P (k) denotes the predicted change.

A.3 Brightness constancy and af�ne image velocity

Brightness constancy Using the notation Ix = @I (x;t )
@x , Iy = @I (x;t )

@y , It = @I (x;t )
@t and

r I(x, t) = (Ix (x, t), Iy (x, t))T , the brightness constancy can be written as,

r I(x, t) � v(x, t) + It (x, t) = 0 (9)

where v = ( dx
dt , dy

dt )T is the image velocity. This equation is not enough to constrain the two
parameters of v, given the gradients (r I), and the time derivatives (It ). What can be determined
though, is v’s component normal to the gradient, the normal image velocity.

2We employ discrete approximations to the first and second derivatives because of their computational simplicity.
3Two consecutive images are used instead when it is to derive horizontal image flow.
4
0 � α � 1, in the experiments α is set to be 0.2 to attenuate the influence of noise.
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Residual normal velocity calculation From (9) we can determine the normal component of the
velocity vector locally as:

vn (x) = �
It (x)

jr I(x)j
. (10)

With an arbitrary velocity field, v̂(x), and the gradients in an image, we can write the normal
velocity as:

v̂n (x) =
r I(x) � v̂(x)

jr I(x)j
, (11)

and define the residual between this and the observed normal velocity as:

R(x) = v̂(x) � vn (x) =
r I(x) � v̂(x) + It (x)

jr I(x)j
(12)

The affine velocity model We model the image velocity, v̂, as one affine motion for an image
region 
 . The number of parameters are then 6 which yields,

v̂(u,x) = B(x)u =
[

a + bx + cy
d + ex + fy

]

(13)

u = (a, b, c, d, e, f )T , B(x) =
[

1 x y 0 0 0
0 0 0 1 x y

]

where a, b, c, d, e, f are unknown scalar constants.

Solving for the affine image velocity To solve for a velocity field we must use a model for the
same affine image velocity, and if we let v̂ be parameterized with u, giving v̂ = v̂(u,x), we can
pose a weighted least squares minimization problem to solve for u,

min
u

=
∑

x∈Ω

w(x)R(u,x)2 (14)

where ω is a weight function and 
 is a region of interest in the image where the parameterized
velocity model should hold.

Solving for the affine motion parameters The weighting function w in the minimization in (14)
is chosen as the gradient magnitude squared, i.e. w(x) = r I(x)2. Then we have the following
minimization problem,

min
u

∑

x∈Ω

(r I(x) � v̂(u,x) + It (x))2. (15)

It is implicit in this minimization formulation that regions with little/no velocity information con-
tributes less/nothing at all to the computed v̂. By using (13) and (15), a region 
 = f x1, . . . ,xn g,
and measurements of the gradients and time derivatives in the image, we get the following linear
equation system,

V T V u = V T
q (16)

where

V =







Ix (x1) Ix (x1)x1 Ix (x1)y1 Iy (x1) Iy (x1)x1 Iy (x1)y1

...
...

...
...

...
...

Ix (xn ) Ix (xn )xn Ix (xn )yn Iy (xn ) Iy (xn )xn Iy (xn )yn






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and q =







� It (x1)
...

� It (xn )






.

(16) is a 6 � 6 symmetric positive semi-definite system, with the 6 elements of u as unknowns.
This is shown explicitly in (17) with all the sums performed over the region to which we want to
fit the model. It becomes definite as soon as there are more than one gradient direction present in
the region over which the minimization is performed.
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∑
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∑
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∑
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∑
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