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Abstract

This paper addresses the formulation of a foveal scale-space and its relation
to the scaling property of receptive �eld sizes with eccentricity. It is shown
how the notion of a fovea can be incorporated into conventional scale-space
theory leading to a foveal log-polar scale-space. Natural assumptions about
uniform treatment of structures over scales and �nite processing capacity
imply a linear increase of minimum receptive �eld size as a function of
eccentricity. These assumptions are similar to the ones used for deriving
linear scale-space theory and the Gaussian receptive �eld model for an
idealized visual front-end.
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1 Introduction

When designing a computer vision system, a crucial decision has to be taken
concerning the design of its sensory stage. Since we are obviously constrained
by some �nite processing capacity, one could decide to cover a large �eld of
view with a coarse-scale detector. Alternatively, the resolving power could be
improved by using a �ner-scale detector at the expense of a smaller �eld of view.
For a vision system aimed at solving a large number of visual tasks, both coarse-
scale context information and high-resolution details may be needed. Including
both capabilities as limiting cases naturally gives rise to a foveal design, which
is the typical implementation in many mammalian vision systems.

A characteristic property of such a distribution is that the �eld of view
is large and that the resolving power decreases with eccentricity, that is, the
distance from the center of the visual �eld. For example, for human vision,
psychophysical experiments by (van de Grind et al. 1986) indicate that veloc-
ity discrimination thresholds increase linearly with eccentricity. This scaling
behaviour is usually explained as a basic \early vision" property, caused by a
general increase of receptive �eld1 sizes towards the periphery. More generally,
the following constraints are known from psychophysics, neuroanatomy and
electrophysiology (as summarized by (Koenderink and van Doorn 1978)):2

� The diameter of the smallest receptive �eld is proportional to eccentricity
(Koenderink et al. 1978a, 1978b, 1978c).

� At any eccentricity all diameters greater than the corresponding smallest
unit are present (Wilson 1970; Matin and Kornheiser 1976; Koenderink
et al. 1978a, 1978b, 1978c).

� Mean receptive �eld size increases linearly with eccentricity (Fischer and
May 1970).

� The transformation from the visual �eld to the cortex is logarithmic
(Schwartz 1977) and the visual cortex seems rather homogeneous (Hubel
and Wiesel 1974).

� At any retinal location many receptive �eld sizes are present but smaller
�elds are located more centrally (Hubel and Wiesel 1974; Fischer 1973).

� The relative overlap of receptive �elds is independent of eccentricity (Fis-
cher 1973).

A consistent explanation of all these characteristics has been given by (Koen-
derink and van Doorn 1978) on the basis of a \stack" of receptive �elds laid
out in a \sunower-heart" distribution (van Doorn et al. 1972).

1Although physiological terms such as \receptive �eld", \retina", etc., are used in this
paper, the visual �eld is not required to be two-dimensional (except in those cases where
restrictions to the two-dimensional case are explicitly made). For example, one may think of
a foveal vision system for three-dimensional medical images, such as computed tomography
(CT) or magnetic resonance imaging (MRI) data, etc.

2Concerning more recent work, see also (Rovamo and Virsu 1979; Braccini et al. 1982;
W�assle et al. 1990; Bijl 1991).
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The purpose of this paper is to provide further theoretical support for this
model and relate it to (linear) scale-space theory , which has been developed
to handle image structures at di�erent scales in a uniform way. We shall start
from a basic assumption that underlies this theory, namely scale-invariance (or
self-similarity), and combine that with the assumption about the existence of
a fovea, that is, a preferred location where image structures are to be resolved
with maximum resolution. Given these assumptions, we shall derive basic char-
acteristics of a foveal scale-space and show how it relates to the logarithmic
transformation of the visual �eld. In particular, we show that the linear increase
of minimum receptive �eld size with eccentricity follows as a direct consequence.

In addition to the biological evidence, the resulting model is closely related
to foveated sensors, which are highly useful for reducing the amount of data to
be processed in computer vision systems (see e.g. (Porat and Zeevi 1988) for a
review). One example of such a sensor is the \Retinal Vision System (RVS)"
developed by (Sandini and Tagliasco 1980; Tistarelli and Sandini 1992). It is
designed on the basis of a linear increase of the support regions of the photore-
ceptors, motivated by the empirical log-polar cortical remapping. Here, we shall
show how such a design can be naturally motivated from similar assumptions
as serve as axioms for determining the shape of the receptive �eld pro�les in the
theory of scale-space representation. Data acquired by such a foveated sensor
serve as natural input for a foveal scale-space.

2 Background: Scale-space theory

A basic motivation for using a multi-scale approach when modelling early visual
operations is the fact that image structure is intrinsically multi-scale; \objects"
manifest themselves as meaningful entities only over certain ranges of scale.3

Therefore, a fundamental property of a visual front-end system must be the
ability to represent and process structures at di�erent scales. In particular,
in situations when no a priori information is available about what to expect
in a scene, all scales should be treated in a similar manner. From these con-
siderations scale-space theory has been developed as a systematic framework
for dealing with image structures at di�erent scales (Witkin 1983; Koenderink
1984b; Babaud et al. 1986; Yuille and Poggio 1986; Koenderink and van Doorn
1987, 1992; Lindeberg 1990, 1994b, 1994a; Florack et al. 1992, 1994a; Florack
1993). This theory basically states that the natural way to embed a given D-
dimensional input signal f : RD ! R into a multi-scale representation is by
convolving it with Gaussian kernels4 (see �gure 1)

g(x; �2) =
1

(2��2)D=2
e�(x

2

1
+���+x2D)=2�

2

(1)

and their derivatives

gx�(x; �
2) = @x�1

1
:::x

�D
D

g(x; �2) (2)

3In this paper the term \resolution" is used to indicate the inverse of scale.
4Here, x = (x1; : : : ; xD) 2 R

D is standard vector notation for an D-dimensional variable,
and � = (�1; : : : ; �D) 2 Z

D constitutes so-called multi-index notation with x� = x�1
1

: : : x�DD .
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Figure 1: One-dimensional Gaussian kernels with di�erent standard deviation � =
p
t.

The value of the scale-space representation of a signal at a certain point is the weighted
average of the signal using the Gaussian weight function.

of various widths �. The corresponding representation L : RD � R+ ! R

L(x; t) = (g(�; t) � f)(x) =
Z
u2RD

g(u; t0) f(x� u) du (3)

is called the scale-space representation of f . The convolution kernels gx�(x; t)
give rise to the notion of receptive �elds (of di�erent orders � and at di�erent
scales t = �2), which sample the derivatives of the scale-space representation

Lx� = @x�L (4)

of f at any point P = (x; t) 2 RD � R+ in scale-space,

Lx�(x; t) =

Z
u2RD

gx�(u; t) f(x� u) du: (5)

The output from such operations can then in turn be used as a basis for ex-
pressing a large number of early visual operations, such as feature detectors and
image descriptors for deriving primitive shape cues. A particularly convenient
framework for formalizing such processes is in terms of multi-scale di�eren-
tial geometric invariants and singularities of these (Koenderink and van Doorn
1987; Florack et al. 1993, 1994b; Lindeberg 1993a, 1994b; Johansen 1994).

Uniqueness of the Gaussian kernel. It has been shown that under plausible
conditions on the �rst stages of visual processing the Gaussian kernel and its
derivatives constitute a unique choice (see the references above). The conditions
that specify uniqueness are basically linearity, shift invariance (homogeneity),
rotational invariance (isotropy) combined with di�erent ways of formalizing the
notion that new structures should not be created by the smoothing operation
and all scales should be treated in a uniform manner.
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3 Foveal scale-space

Clearly, an actual realization of a visual front end based on (continuous) scale-
space theory is limited by a �nite processing capacity. Therefore, we have to
select a �nite number N of sample points P (i) = (x(i); t(i)) 2 R

D � R+ at
which the scale-space representation is to be explicitly computed. These points
correspond to (possibly overlapping) receptive �elds with center locations x(i)

and at scales t(i).

3.1 Assumptions

If we want to preserve uniform treatment of structures at di�erent scales (scale
invariance) then we have to take into account the following:

� For each �xed level of scale, t(j), the number n(j) of sample points P (i)

corresponding to that level should be the same, i.e., n(j) = n8j.

� The discretization of the scale parameter should not introduce any bias
towards any scale(s).

Of course, based on a �nite number of samples, one cannot maintain spatial
homogeneity, except possibly within a con�ned region. Therefore, it is natural
to relax the strict homogeneity requirement of linear scale-space theory (where
it applies to the overall spatial domain) by:

� For any level of scale t(j), the distribution of center locations x(i) should
be homogeneous within a connected neighbourhood of a preferred point
O(j).

Scale invariance implies that the preferred points O(j) should coincide for all
scales. This gives rise to unique foveal point F = O(j) 8j. Because of this priv-
ileged point, it is natural to add one more symmetry requirement, namely:

� The foveal system should be rotationally symmetric with respect to F .

All of these assumptions are more or less self-explanatory except the second one.
Concerning this, it can be shown that for continuous signals the only self-similar
parametrization of scale is given by

�(�) = A log
�

�0
(6)

where A 2 R and �0 2 R+ are arbitrary constants (Koenderink 1984b; Linde-
berg 1993b; Florack et al. 1992). It is natural to use an equidistant sampling
of � . This corresponds to a constant ratio �(j+1)=�(j) between adjacent scale
levels when measured in terms of �. (Without loss of generality, we may take
A = 1.)

Layout of receptive �elds. If we distribute the receptive �elds according to the
abovementioned assumptions, we obtain a foveal system as sketched in �gure 2.
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Figure 2: Schematic illustration of the (cone-like) distribution of receptive �elds across
scales as it results from the assumptions in section 3.1. Here, the relative overlap of
neighbouring �xed-scale receptive �elds has been chosen arbitrarily.

Interpretation in terms of normalized coordinates. A natural coordinate sys-
tem to use when dealing with a scale-space representation is one in which length
units are taken relative to scale. In such dimensionless coordinates

� = x=�; (7)

the cone in �gure 2 simpli�es to a cylinder (see �gure 3), and both the scales
of the receptive �elds and the radius of the connected foveal neighbourhood
occupied by the receptive �elds at a certain scale will be constant across scales.

Note the similarity between this representation and the central region of the
log-Cartesian fovea proposed by (Crowley et al. 1990; Crowley 1991); see also
(Koenderink 1984a).

3.2 Linear increase of receptive �eld size

To simplify the treatment, let us consider the case where a continuous approx-
imation is valid, and the distribution of receptive �elds over space and scales
can be treated as dense.
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Figure 3: When expressed in terms of rescaled dimensionless coordinates, � = x=�,
the distribution of �gure 2 becomes a cylinder, the axial symmetry of which reects the
scale invariance. Moreover, a self-similar scale sampling corresponds to uniform scale
steps in e�ective scale.

A basic property of receptive �elds is that a characteristic width r of the re-
ceptive �eld is proportional to the scale parameter �, i.e., r � �. Given the
constraints above, it follows that the receptive �elds at scale � will occupy a
region of radius

R(�) =
�

�0
"0; (8)

where "0 is the radius at a certain level of scale �0. The value of "0 is determined
by the number n of receptive �elds per scale level and their relative overlap
(which constitute obvious freedoms of design).5

Let now x be the location vector for any given base point relative to the
foveal center F . Obviously, at a distance " = jxj from the center of the fovea,
the minimum scale, �min("), that admits a full covering of a connected foveal
neighbourhood f� 2 RD : j�j � "g by �min(")-scaled receptive �elds is given by

�min(") = �0"̂ (9)

where "̂ denotes the relative eccentricity related to a certain "0

"̂ =
"

"0
: (10)

5For di�erent dimensions D, the ratio "0=�0 is related to the number of receptive �elds per
level n by "0=�0 � n1=D.
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Hence, in an idealized case, the width of a minimum size receptive �eld increases
linearly with eccentricity ". In an actual realization of a foveal system there is
always a limiting minimum scale corresponding to the maximum resolution of
the system as well as a limiting upper bound �max. If we take the minimum
scale to be �0, then (9) can only hold when " � "0, i.e., outside a foveal region.
Within this region, one can imagine a constant minimum receptive �eld size,
�min(") = �0 < �max (possibly combined with a smooth transition between
these two qualitatively di�erent scaling behaviours).

Note that this analysis holds independently of any speci�c sampling of
scale, although self-similarity across scales requires an exponential sampling
(see above). Moreover, the linear scaling behaviour is independent of spatial
dimension D.

Figure 4 illustrates the result of sampling data in this way using minimum
size receptive �elds. Notice how �ne-scale details are successively suppressed
towards the periphery.

Figure 4: Left: A piece of text shown at a constant (high) resolution without smoothing
(� = 0). (The image size is 512 � 512 pixels.) Right: The result of registering these
data with receptive �elds whose scale values increase linearly with eccentricity. (At
each corner the scale value is � = 8

p
2 expressed in units of pixel length.)

3.3 Relation to the log-polar mapping

Schematically, the retinal distribution of minimum size receptive �elds can (in
the two-dimensional case) be illustrated by the well-known \sunower model"
as shown in �gure 5(a). This distribution can be mapped onto a transformed
domain where the receptive �elds are laid out in a uniform way and are nor-
malized to equal size (see �gure 5(b)) by

x = � e� cos �;

y = � e� sin �;
(11)
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where � 2 R+ is an arbitrary constant. This is the well-known log-polar mapping

(Schwartz 1977; Koenderink et al. 1978c) which transforms the visual �eld into
a homogeneous domain such that rotations and rescalings relative to the foveal
center correspond to mere translations. (Henceforth, we shall use the subscript
LP to refer to the log-polar case and C to refer to the Cartesian case.)

Figure 5: Left: Schematic illustration of the sunower model for a visual front-end.
Right: The log-polar transformation maps this distribution into a homogeneous one.

In terms of the distribution in �gure 2, this log-polar transformation corre-
sponds to mapping the outer boundary @� of the cone � to a rectangular region
with periodic boundary conditions (a strip on a cylinder). This set of data can
be seen as the �nest level of scale in a foveal multi-scale representation. Figure 6
shows the result of applying this log-polar transform to the data in �gure 4(b).

Figure 6: The result of mapping the data in �gure 4(b) according to the log-polar
transform (11). (The two images show the same data. The only di�erence is that the
periodic boundaries have been di�erently treated to make the text easy easier to read.)
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3.4 Multi-scale log-polar mapping

To describe the genuine multi-scale behaviour of the foveal system, we shall
now consider the interior of the cone � as a parameterized family of surfaces
corresponding to scaled versions of the outer boundary.

Consider a certain point (x; y; t = �2) in the scale-space representation of
a two-dimensional signal. In terms of di�erential entities, a natural choice for
an in�nitesimal line element in the Cartesian domain is

dl2C = dx2 + dy2; (12)

whereas in the log-polar domain a natural line element is

dl2LP = d�2 + d�2: (13)

These line elements are related by

dlC = " dlLP ; (14)

where

"2 = x2 + y2: (15)

The ratio dlLP =dlC corresponds, up to an irrelevant proportionality constant,
to the \cortical magni�cation factor". In the case the log-polar mapping holds
exactly, it is apparently equal to inverse eccentricity.

In a multi-scale representation, it is natural to measure distances relative
to scale. With �C = � being the scale parameter in the Cartesian domain, and
�LP being a corresponding scale-parameter in the log-polar domain, we can
thus de�ne normalized in�nitesimal line elements by

d~lC =
dlC
�C

;

d~lLP =
dlLP
�LP

:

(16)

By requiring these normalized line elements to be comparable (d~lC = d~lLP ), it
follows that the scale parameters must be related by

�C = " �LP : (17)

In other words, a �xed value of the scale parameter in the log-polar domain
corresponds to a linear increase with eccentricity of the scale parameter in the
Cartesian domain. Whereas �C parameterizes a family of horizontal slices in
scale-space, �LP parameterizes a family of cones with the apex corresponding
to the foveal singularity (x; y t) = (0; 0; 0). Geometrically, �LP equals the
slope of the cone it represents (see �gure 7).

The combined mapping (x; y; �C) 7! (�; �; �LP ) given by (11), (15) and
(17) is the natural extension of the log-polar transform to a multi-scale repre-
sentation.
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Figure 7: The Cartesian scale parameter �C = � parameterizes a family of horizontal
slices in scale-space whereas the the log-polar scale parameter �LP = �=" parameterizes
a family of cones with the apex corresponding to the foveal singularity F .

3.5 Di�usion equation

The linear scale-space representation of a D-dimensional signal fC de�ned from
(3) can equivalently be de�ned as the solution of the di�usion equation in RD .
In two dimensions we have

@tCLC =
1

2
(@xxLC + @yyLC) (18)

with initial condition LC(x; y; tC;0) = fC(x; y) where tC;0 represents the sam-
pling scale. A special property of the multi-scale log-polar transform is that
it maps this equation to a similar one when expressed in terms of log-polar
coordinates

@tLPLLP =
1

2
(@��LLP + @��LLP ): (19)

Here, the initial condition is LLP (�; �; tLP;0) = fLP (�; �) where the initial
data fLP should correspond to data acquired with receptive �elds that increase
linearly with eccentricity (corresponding to the receptors marked by bold blocks
in �gure 8). In addition, LLP is required to be 2�-periodic with respect to �.

Disregarding the singularity, the di�usion operation and the multi-scale log-
polar transform commute, so di�usion (and Gaussian convolution) can equiv-
alently be done in either domain. Note that a log-polar scale increment �tLP
corresponds to a Cartesian scale increment �tC = "2�tLP which tends to zero
at the singularity.

When solving the linear di�usion equation, one may either iterate over the
evolution parameter t according to some standard scheme or convolve the input
data with the appropriate Greens function. In the Cartesian case, this is the
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well-known normalized Gaussian, whereas in the log-polar case, the Green's
function is a Gaussian function in the �-direction multiplied by an in�nite sum
of Gaussian functions with o�sets 2n� (n 2 Z) in the �-direction

gLP (�; �; �
2
LP ) = g(�; �2LP )

1X
n=�1

g(� � 2n�; �2LP ): (20)

(Here, g here denotes the one-dimensional Gaussian kernel according to (1).)
It turns out that the log-polar transform can also be derived in an alternative

way by considering spatial transformations that preserve angular relationships,
so-called conformal mappings. It can be shown (Florack 1993) that for two-
dimensional signals the log-polar transform arises as the only non-trivial and
physically plausible instance of such a mapping that is rotationally symmetric
with respect to a certain point and preserves the (local) form of the linear
di�usion equation (i.e. transforms (18) to (19)).

eccentricity, "

scale, �

Figure 8: Schematic illustration of the linear increase of minimum receptive �eld size
in the one-dimensional case. The bold blocks symbolize the measurement data corre-
sponding to the �nest scale tLP;0 in the log-polar domain, that is, the initial data to the
log-polar di�usion equation (19). To reduce aliasing problems, it is natural to implement
these receptive �elds as weighted local averages of outputs from sensors (photorecep-
tors) of higher resolution distributed with a higher density. This can be implemented
in terms of a dense sunower-heart sensor array. The implementation of the receptive
�elds corresponding to the non-bold blocks allows for an obvious freedom in design;
they can be constructed either from �ner-scale units (using cascade smoothing) or in
the same way as the bold units (from direct connections to the photoreceptors).

3.6 Scale distribution of receptive �elds at a �xed point

The linear scaling behaviour applies to the minimum size receptive �elds with
varying eccentricity. One may pose the question of what is the distribution over
scales of the receptive �eld ensemble at any �xed eccentricity. Clearly, one may
expect larger receptive �elds to have a relatively larger probability at higher
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eccentricity, but it is also clear that this probability depends upon the scale
sampling, i.e., upon how the receptive �elds at any given point are distributed
over scales.

Introduce p�(�; ") d� as the probability of �nding a receptive �eld in the
scale interval [�; � + d�] at eccentricity ". Assume that the scale levels are
parameterized by a dimensionless e�ective scale parameter , � , such that the
scale sampling of � = �(�) corresponds to a uniform and equidistant sampling
in � . (Recall that scale invariance leads to (6).) At any point x at eccentricity
" = jxj there are receptive �elds in the scale range [�min("); �max]. Let p� (� ; ")
be de�ned by

p� (� ; ") d� = p�(�; ") d�; (21)

and let T (") = �max � �min(") denote the available scale range at eccentricity
" (where �max and �min(") are the parameter values associated with �max and
�min("), respectively). In terms of the e�ective scale parameter, � , we have

p� (� ; ") =
1

T (")
(" � "0; � � �min(")); (22)

and in terms of the conventional scale parameter, �,

p�(�; ") =
� 0(�)

T (")
(" � "0; � � �min(")); (23)

where � 0(�) denotes the derivative of the mapping �(�) (the inverse of �(�)).
Within the foveal region, (22) and (23) apply by replacing T (") by T ("0).

Exponential scale sampling. In the case where the e�ective scale is given by
(6), the probability density p�(�; ") at any eccentricity decreases with � as
1=�. The explicit expression is

p�(�; ") =
1

�

1

log (�min(1; 1="̂))
(" � "0; � � �min(")) (24)

where � is the ratio between the maximum scale and the minimum scale

� =
�max

�0
: (25)

Note that the expression (24) is always well-de�ned, since the constraint �max >
�min(") implies max(1; "̂) < �.

Average receptive �eld size at a given location. We can use the relations (22)
and (23) for calculating ensemble averages in the di�erent domains by

��(") =

Z �max

�=�min(")
� p� (� ; ") d�;

~�(") =

Z �max

�=�min(")
� p�(�; ") d�:

(26)
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Straightforward calculations show that

��(") =
1

2
(�max + �min(")) =

1

2
log (�max(1; "̂)) ;

~�(") =
�0(��max(1; "̂))

log (�min(1; 1="̂))
:

(27)

For the purpose of comparison, let us de�ne corresponding descriptors in the
transformed domains by ��(") = �0 exp ��(") and ~�(") = log ~�(")=�0. This gives

��(") =
p
�max�min(") =

p
�0�max

p
max(1; "̂);

~�(") = log
��max(1; "̂)

log (�min(1; 1="̂))
:

(28)

Note that there is a conceptual di�erence between de�ning the ensemble average
in the di�erent domains, i.e., in general we have �� 6= ~� or, equivalently, �� 6= ~�
(see �gure 9 for an illustration). Whereas ~� denotes the algebraic average, under
the assumption of self-similarity �� corresponds to the geometric average and,
in fact, also to the median.

"̂

�=�0 ~�

��

Figure 9: The variation with eccentricity of the ensemble averages of the receptive �eld
sizes �� and ~� computed based on the e�ective scale � and the linear scale parameter �
respectively.

In the limit case when the radius of the foveal region "0 tends to zero (corre-
sponding to "̂!1 outside the foveal singularity) the asymptotic behaviour of
these entities is given by

��(") =
p
�0�max

p
"̂;

~�(") = �0
"̂

log "̂=�
:

(29)

so the ensemble average ~� increases faster with eccentricity.

Relations to biological vision. At �rst sight, the behaviour of ��(") and ~�(")
may seem to conict the results by (Fischer and May 1970) stating that the
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average receptive �eld sizes increase linearly with ". However, their averaging
relates to a di�erent type of ensemble. The entities �� and ~� express the average
over the receptive �elds that are simultaneously stimulated by a point stimulus
at a certain visual location, hence prior to the log-polar mapping. Thus, these
averages may have psychophysical relevance in situations when information over
scales is combined.

This is to be distinguished from the ensemble of receptive �eld centers (cor-
responding to axons in a biological system), which have a 1=�2-decreasing spa-
tial density as a function of scale. This type of ensemble is relevant for elec-
trophysiological cell recordings, where probing is typically performed in the
homogeneous log-polar domain. For this ensemble, the average receptive �eld
size does indeed increase linearly with eccentricity; see (Koenderink and van
Doorn 1978).

3.7 Smooth transition from foveal to peripheral region

Due to the limitation on the minimum receptive �eld size, there is an inevitable
deviation from the ideal model, which has a singularity at the foveal center.
Previously, this problem was handled in an ad hoc way by letting the minimum
receptive �eld size be constant within a �nite foveal neighbourhood. This leads
to a discontinuous transition from this foveal region to the periphery. Although
it may not be a crucial problem in practical implementations, one might want
to avoid such a discontinuity and require a smooth transition from a peripheral
log-polar behaviour to a more regular (Cartesian) behaviour near the fovea.

A straightforward way to obtain smooth transition is as follows: The family
of cones in �gure 7 can be described by

C�LP : x2 + y2 = "20 (
�

�0
)2(

�LP;0
�LP

)2; (30)

where �LP is the parameter and �LP;0 is the parameter value corresponding
to the outer boundary. To avoid the singularity, we can replace the cones by a
family of hyperboloids

H�MLP : x2 + y2 = "20

�
(
�

�0
)2(

�MLP;0

�MLP
)2 � 1

�
(31)

parameterized by a modi�ed log-polar scale parameter tMLP = �2MLP given by

tC = �20 (1 + "̂2) tMLP : (32)

Each H�MLP asymptotically approaches C�MLP with increasing eccentricity " =
(x2 + y2)1=2. For each �MLP the hyperboloid has a smooth transition from

�C(0) =
�MLP

�MLP;0
�0 (33)

at zero eccentricity to the asymptotic behaviour

�C(") =
�MLP

�MLP;0
�0"̂ (34)
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at high eccentricities. Note, however, that in contrast to the iso-surfaces of �C
and �LP (see �gure 7) an iso-surface of �MLP is not a developable surface (it
has non-zero Gaussian curvature). Hence, in contrast to the log-polar transfor-
mation, which is a conformal mapping, it is impossible to map an iso-surface
of �MLP onto a planar domain without introducing local angular distortions.
(Such distortions can, however, be reduced by dividing the surface into several
parts as done. e.g., in the division between the left and right �elds of view in
the human vision system.)

Figure 10: Parameterizing the scale-space representation by a family of hyperboloids
constitutes one way of obtaining iso-surfaces of the (modi�ed) scale parameter that
correspond to an approximate Cartesian behaviour at the fovea and an approximate
log-polar behaviour at the periphery. The smooth transition between these qualitatively
di�erent behaviours, however, gives rise to an intrinsically curved iso-surface which
cannot be mapped onto a planar surface without introducing angular distortions.

In terms of the di�usion equation, the modi�ed log-polar transformation corre-
sponds to

@tMLPLMLP =
1

2
�20(1 + "̂2)r2LMLP : (35)

At low eccentricities, this behaviour can obviously be well modelled by the
Cartesian di�usion equation (18) and at high eccentricities it approaches the
log-polar di�usion equation (19) which can be written

@tLPLLP =
1

2
�20 "̂

2r2LMLP : (36)

Given receptive �elds that register r2L at di�erent scales it is straightforward
to use (35) for constructing the scale-space by summing up the contributions
from di�erent scales. Assuming that lim�C!1L(x; �2C) = 0 we have

L(x; t) = �(L(x; 1)� L(x; t)) (37)

= �
Z
1

t0=t
@tL(x; t

0)dt0 (38)

= �1

2

Z
1

t0=t
r2L(x; t0)dt0: (39)
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4 Summary

We have presented a model for how a multi-scale image representation can be
constructed for a foveal visual system. This model is an adaptation of con-
ventional linear scale-space theory and provides a direct link to the well-known
log-polar mapping. In fact, log-polar sampled image data serve as natural input
data to such a foveal scale-space.

An immediate consequence of this model is that there is a linear relation-
ship between minimum receptive �eld size and eccentricity. Whereas there is
a natural choice of exponential scale sampling based on scale invariance, the
linear relationship holds independently of any speci�c scale sampling scheme.

The model is qualitatively consistent with many results from neuroscience
and psychophysics concerning visual front-end characteristics. It may have im-
plications both for the construction of arti�cial vision systems as well as for
understanding qualitative characteristics of biological systems. It should be
stressed though that the intention has not been to model biological vision as
such, but to provide an idealized theoretical model based on �rst principles.
(For an extensive review concerning biological species; see (Hughes 1977).)

5 Discussion

This theory has been developed for (zero-order) Gaussian smoothing functions.
However, it equally applies to any �lter pro�le that has an intrinsic scale, in par-
ticular, the family of Gaussian derivatives (Koenderink and van Doorn 1990).

Although each �lter has a non-in�nitesimal extent, it is natural to scale the
�lters uniformly according to the eccentricity at their central points.6 Of course,
one could also imagine stretching the �lters continuously which would yield
non-symmetric �lter pro�les (as done in the temporal domain by (Koenderink
1988)). In the spatial domain, however, such an approach would be unnatural,
since it violates the translational invariance within each scale layer.
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